1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include <stdbool.h>
typedef unsigned long long num;
typedef struct {bool s; num n; num d;} rational;
num safe_sum(num n1, num n2){
if(n2 > ULLONG_MAX-n1){
printf("Sum overflow: Adding %llu and %llu\n",n1,n2);
exit(1);
}
else {
return n1+n2;
}
}
num safe_product(num n1, num n2){
if(n1 != 0 && n2 > ULLONG_MAX/n1){
printf("Product overflow: Multiplying %llu by %llu\n",n1,n2);
exit(1);
}
else {
return n1*n2;
}
}
rational int_to_valuetype(int i){
rational r;
r.d = 1;
r.n = abs(i);
if(i >= 0) { r.s=false; } else { r.s=true; }
return r;
}
unsigned int int_to_exptype(unsigned int i){ return i; }
num gcd(num a, num b){
num c;
while (b) {
c = a % b;
a = b;
b = c;
}
return a;
}
rational cancel(rational r){
num a = gcd(r.n,r.d);
rational res = {r.s,r.n/a,r.d/a};
return res;
}
rational sum(rational r1, rational r2){
num a = gcd(r1.d,r2.d);
num r1da = r1.d/a;
num r2da = r2.d/a;
rational r;
r.d = safe_product(r1da,r2.d);
num n1 = safe_product(r1.n,r2da);
num n2 = safe_product(r2.n,r1da);
if(r1.s == r2.s){
r.n = safe_sum(n1,n2);
r.s = r1.s;
}
else {
if(n1 >= n2) {
r.n = n1 - n2;
r.s = r1.s;
}
else {
r.n = n2 - n1;
r.s = r2.s;
}
}
return cancel(r);
}
rational difference(rational r1, rational r2){
r2.s = !r2.s;
return sum(r1,r2);
}
bool is_greater_certainly(rational r1, rational r2){
rational diff = difference(r1,r2);
return !diff.s && diff.n > 0;
}
bool is_greater_possibly(rational r1, rational r2){
return is_greater_certainly(r1,r2);
}
rational maximum(rational r1, rational r2){
if(is_greater_certainly(r1,r2)) return r1;
else return r2;
}
rational product(rational r1, rational r2){
rational r;
rational s1 = {r1.s, r1.n, r2.d};
rational s2 = {r2.s, r2.n, r1.d};
rational t1 = cancel(s1);
rational t2 = cancel(s2);
r.s = t1.s^t2.s;
r.n = safe_product(t1.n,t2.n);
r.d = safe_product(t1.d,t2.d);
return cancel(r);
}
rational ratio(rational r1, rational r2){
rational r2i = {r2.s,r2.d,r2.n};
return product(r1,r2i);
}
rational absolute(rational r){
rational s = {false,r.n,r.d};
return s;
}
rational power(rational r, unsigned int p){
rational s = {0,1,1};
for(int i = 1; i<= p; i++){
s = product(r,s);
}
return s;
}
double to_double(rational r){
double i;
if(r.s) { i=-1.0; } else { i=1.0; }
return i*((double)r.n)/((double)r.d);
}
int to_string(char* s, rational r){
double f = to_double(r);
sprintf(s,"%llu / %llu = %f… +/- %6.1e",r.n,r.d,f,f*DBL_EPSILON);
return 0;
}
int root_to_string(char* s, rational r, unsigned int p){
double f = pow(to_double(r),1.0/p);
sprintf(s,"(%llu / %llu)^1/%i = %f… +/- %6.1e",r.n,r.d,p,f,2*DBL_EPSILON*f);
return 0;
}
|