1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
typedef unsigned long long num;
typedef struct {bool s; num n; num d} rational;
unsigned int safe_sum(num n1, num n2){
if(n2 > ULLONG_MAX-n1){
printf("Sum overflow: Adding %llu and %llu\n",n1,n2);
exit(1);
}
else {
return n1+n2;
}
}
num safe_product(num n1, num n2){
if(n1 != 0 && n2 > ULLONG_MAX/n1){
printf("Product overflow: Multiplying %llu by %llu\n",n1,n2);
exit(1);
}
else {
return n1*n2;
}
}
rational convert_int(int i){
rational r;
r.d = 1;
r.n = abs(i);
if(i >= 0) { r.s=false; } else { r.s=true; }
return r;
}
num gcd(num a, num b){
num c;
while (b) {
c = a % b;
a = b;
b = c;
}
return a;
}
rational cancel(rational r){
num a = gcd(r.n,r.d);
rational res = {r.s,r.n/a,r.d/a};
return res;
}
rational sum(rational r1, rational r2){
num a = gcd(r1.d,r2.d);
num r1da = r1.d/a;
num r2da = r2.d/a;
rational r;
r.d = safe_product(r1da,r2.d);
num n1 = safe_product(r1.n,r2da);
num n2 = safe_product(r2.n,r1da);
if(r1.s == r2.s){
r.n = safe_sum(n1,n2);
r.s = r1.s;
}
else {
if(n1 >= n2) {
r.n = n1 - n2;
r.s = r1.s;
}
else {
r.n = n2 - n1;
r.s = r2.s;
}
}
return cancel(r);
}
rational difference(rational r1, rational r2){
r2.s = !r2.s;
return sum(r1,r2);
}
bool is_greater(rational r1, rational r2){ return !(difference(r1,r2).s); }
rational product(rational r1, rational r2){
rational r;
rational s1 = {r1.s, r1.n, r2.d};
rational s2 = {r2.s, r2.n, r1.d};
rational t1 = cancel(s1);
rational t2 = cancel(s2);
r.s = t1.s^t2.s;
r.n = safe_product(t1.n,t2.n);
r.d = safe_product(t1.d,t2.d);
return cancel(r);
}
rational ratio(rational r1, rational r2){
rational r2i = {r2.s,r2.d,r2.n};
return product(r1,r2i);
}
rational absolute(rational r){
rational s = {false,r.n,r.d};
return s;
}
rational power(rational r, unsigned int p){
rational s = {0,1,1};
for(int i = 1; i<= p; i++){
s = product(r,s);
}
return s;
}
double to_double(rational r){
double i;
if(r.s) { i=-1.0; } else { i=1.0; }
return i*((double)r.n)/((double)r.d);
}
bool to_string(char* s,rational r){
sprintf(s,"%llu / %llu",r.n,r.d);
return true;
}
|