summaryrefslogtreecommitdiff
path: root/charf.c
diff options
context:
space:
mode:
authorJulian Weigt <juw@posteo.de>2025-12-23 15:55:51 +0000
committerJulian Weigt <juw@posteo.de>2026-02-04 15:55:45 +0100
commitedcded21cbeb272ff206a92c693ab21bf33ebae6 (patch)
tree5f6e0f2a73bae9644619e8b40ec99895ee3f68ff /charf.c
parent470b14ac5e1a852ad36a9fd7ff580aaab7d23053 (diff)
Define safe sums and products and finish exact version.
Diffstat (limited to 'charf.c')
-rw-r--r--charf.c100
1 files changed, 53 insertions, 47 deletions
diff --git a/charf.c b/charf.c
index ccbc265..97f9e34 100644
--- a/charf.c
+++ b/charf.c
@@ -2,11 +2,13 @@
#include <stdlib.h>
#include <math.h>
+#ifndef EXACT
#define EXACT false
+#endif
#if EXACT
#include "ratio.h"
-#define VALUETYPE ratio
+#define VALUETYPE rational
#define EXPTYPE unsigned int
#else
#include "double.h"
@@ -22,18 +24,18 @@ void differentiate(VALUETYPE** df, int D, int K){
/*compute kth derivative of f from (k-1)th*/
/*only compute derivatives at arguments i < D-k, because for larger i we would need data from outside the domain of f*/
for(i=0; i<D-k; i++){
- df[k][i] = df[k-1][i+1] - df[k-1][i];
+ df[k][i] = difference(df[k-1][i+1], df[k-1][i]);
}
}
}
/*given function f on domain [0,D-1] compute pth root of integral of |f|^p*/
-VALUETYPE integrate(VALUETYPE* f, EXPTYPE p, int D){
- VALUETYPE integralp = 0.0;
+VALUETYPE integratep(VALUETYPE* f, EXPTYPE p, int D){
+ VALUETYPE integralp = convert_int(0);
for(int i=0;i<D;i++){
- integralp += pow(fabs(f[i]),p);
+ integralp = sum(integralp,power(absolute(f[i]),p));
}
- return pow(integralp,1/p);
+ return integralp;
}
void compute_maximalfunction(VALUETYPE* f, VALUETYPE** Sf, VALUETYPE** Af, VALUETYPE* Mf, int D){
@@ -47,10 +49,10 @@ void compute_maximalfunction(VALUETYPE* f, VALUETYPE** Sf, VALUETYPE** Af, VALUE
for(int n=1;n<D;n++){
/*Recursively compute all integrals and averages over intervals of increasing length*/
for(int i=0;i+n<D;i++){
- Sf[i][i+n] = Sf[i][i+n-1]+f[i+n];
+ Sf[i][i+n] = sum(Sf[i][i+n-1], f[i+n]);
Sf[i+n][i] = Sf[i][i+n];
- Af[i][i+n] = Sf[i][i+n]/(n+1);
+ Af[i][i+n] = ratio(Sf[i][i+n],convert_int(n+1));
Af[i+n][i] = Af[i][i+n];
}
}
@@ -59,23 +61,25 @@ void compute_maximalfunction(VALUETYPE* f, VALUETYPE** Sf, VALUETYPE** Af, VALUE
for(int i=0;i<D;i++){
Mf[i] = Af[i][i];
for(int j=0;j<D;j++){
- if(Af[i][j] > Mf[i]) Mf[i] = Af[i][j];
+ if(is_greater(Af[i][j], Mf[i])) Mf[i] = Af[i][j];
}
}
/*Print computed functions and averages*/
- //printf("Mf ");
- //for(int i=0;i<D;i++) printf("%+0.1f ",Mf[i]);
- //printf("\n");
- //for(int i=0;i<D;i++){
- //for(int j=0;j<D;j++) printf("%0.1f ",Af[i][j]);
- //printf("\n");
- //}
+ /*
+ printf("Mf ");
+ for(int i=0;i<D;i++) printf("%+0.1f ",to_double(Mf[i]));
+ printf("\n");
+ for(int i=0;i<D;i++){
+ for(int j=0;j<D;j++) printf("%0.1f ",to_double(Af[i][j]));
+ printf("\n");
+ }
+ */
}
/*given integer valued function f on domain D, compute ||Mf^{(K)}||_p/||f^{(K)}||_p*/
/*All the other arguments are pointers to storage for intermediate variables. The purpose is that we do not have to allocate new storage with each invocation. Probably there's a more user friendly way but I don't know much about garbage collection.*/
-VALUETYPE compute_derivatives(VALUETYPE* f, VALUETYPE** Sf, VALUETYPE** Af, VALUETYPE* Mf, VALUETYPE** df, VALUETYPE** dMf, EXPTYPE p, VALUETYPE* intdf, VALUETYPE* intdMf, int D, int K){
+VALUETYPE compute_derivatives(VALUETYPE* f, VALUETYPE** Sf, VALUETYPE** Af, VALUETYPE* Mf, VALUETYPE** df, VALUETYPE** dMf, EXPTYPE p, VALUETYPE* intdfp, VALUETYPE* intdMfp, int D, int K){
/*Convert integer valued f to float valued df[0]*/
df[0] = f;
@@ -87,41 +91,43 @@ VALUETYPE compute_derivatives(VALUETYPE* f, VALUETYPE** Sf, VALUETYPE** Af, VALU
differentiate(dMf,D,K);
/*Print derivatives*/
- //for(int k=0;k<=K;k++){
- //printf("f %d: ",k);
- //for(int i=0;i<D;i++) printf("%+0.1f ",df[k][i]);
- //printf("\n");
- //printf("Mf %d: ",k);
- //for(int i=0;i<D;i++) printf("%+0.1f ",dMf[k][i]);
- //printf("\n");
- //}
+ /*
+ for(int k=0;k<=K;k++){
+ printf("f %d: ",k);
+ for(int i=0;i<D;i++) printf("%+0.1f ",df[k][i]);
+ printf("\n");
+ printf("Mf %d: ",k);
+ for(int i=0;i<D;i++) printf("%+0.1f ",dMf[k][i]);
+ printf("\n");
+ }
+ */
//for(int k=0;k<=K;k++){
/*Compute L^p norm of derivatives*/
int k=K;
- intdf[k] = integrate(df[k],p,D);
- intdMf[k] = integrate(dMf[k],p,D);
- //printf("%d: %f / %f = %f\n",k,intdMf[k],intdf[k],intdMf[k]/intdf[k]);
+ intdfp[k] = integratep(df[k],p,D);
+ intdMfp[k] = integratep(dMf[k],p,D);
+ //printf("%d: %f / %f = %f\n",k,intdMfp[k],intdfp[k],intdMfp[k]/intdfp[k]);
//}
/*Return ratio of L^p norms*/
- return intdMf[k]/intdf[k];
+ return ratio(intdMfp[k], intdfp[k]);
}
int main() {
/*length of the support of f*/
-int N=16;
-
-/*length of the domain*/
-int D=5*N;
+int N=14;
/*order of the derivative to consider. Should not be larger than (D-N)/2 because then the support of f^{(K)} reaches outside of our domain.*/
-int K=3;
+int K=14;
+
+/*length of the domain*/
+int D=N+K+1;
/*exponent p of the L^p norm to consider*/
-EXPTYPE p = 1.0;
+EXPTYPE p = 1;
/*allocate memory for f*/
VALUETYPE* f = malloc(D*sizeof(VALUETYPE));
@@ -142,41 +148,41 @@ for(int k=0;k<=K;k++){
df[k] = malloc(D*sizeof(VALUETYPE));
dMf[k] = malloc(D*sizeof(VALUETYPE));
for(int i=0;i<D;i++){
- df[k][i] = 0;
- dMf[k][i] = 0;
+ df[k][i] = convert_int(0);
+ dMf[k][i] = convert_int(0);
}
}
dMf[0] = Mf;
/*Allocate memory for integrals*/
-VALUETYPE* intdf = malloc(K*sizeof(VALUETYPE));
-VALUETYPE* intdMf = malloc(K*sizeof(VALUETYPE));
+VALUETYPE* intdfp = malloc(K*sizeof(VALUETYPE));
+VALUETYPE* intdMfp = malloc(K*sizeof(VALUETYPE));
/*Allocate memory for ||Mf^{(k)}||_p/||f^{(k)}||_p.*/
-VALUETYPE r = 0.0;
+VALUETYPE r = convert_int(0);
/*Iterate over all strings of 0s and 1s with length N. Those will represent f.*/
for(int t=1; t<=(1 << N)-1; t++){
/*Initiate f to be zero everywhere.*/
- for(int i=0;i<D;i++) f[i]=0.0;
+ for(int i=0;i<D;i++) f[i] = convert_int(0);
//for(int i=0;i<N;i++) f[N+i] = rand() %2;
/*In the middle of the domain set f to the values encoded in bit string t*/
for(int i=0;i<N;i++){
/*Since we care about the Kth derivative, which in i depends on f on [i,i+K], shift f to the right by K/2 so that the most interesting part of f^{(K)} and Mf^{(K)} will be around the center of the domain*/
- f[2*N+i+K/2] = (VALUETYPE) ((t >> i) & 1);
+ f[(D-N)/2+i+K/2] = convert_int((t >> i) & 1);
//if(i%3==0) f[2*N+i+K/2] = 1;
}
/*Compute ||Mf^{(k)}||_p/||f^{(k)}||_p.*/
- r = compute_derivatives(f, Sf, Af, Mf, df, dMf, p, intdf, intdMf, D, K);
+ r = compute_derivatives(f, Sf, Af, Mf, df, dMf, p, intdfp, intdMfp, D, K);
//printf("%.3d: %.3f \n",t,r);
/*Print f and ||Mf^{(k)}||_p/||f^{(k)}||_p if the latter is close to 1/2.*/
- if(r>.4997){
+ if(to_double(r)>.4997){
printf("f: ");
- for(int i=0;i<D;i++) printf("%1.0f ",f[i]);
+ for(int i=0;i<D;i++) printf("%1.0f ",to_double(f[i]));
printf("\n");
- printf("%.4f\n",r);
+ printf("%.4f\n",to_double(r));
}
}
-
+
return 0;
}